A Phil-for-an-ill Blog

January 21, 2009

Jerry Brunetti – Food as Medicine (1/2; 8/10)


http://www.agri-dynamics.com/

In 1999 Jerry Brunetti was diagnosed with Non-Hodgkin’s Lymphoma and given 6 months to live. He did not submit to chemotherapy, but rather, developed his own unique dietary approach to enhance his immune system. In this informative video, Jerry shares his personal experiences and provides his recipe for healthy living. You will learn about the crucial importance of minerals, which foods to choose for your best health requirements and what to avoid. After viewing this video you’ll realize the remarkable value of food in building good foundations, and providing buffers, to keep your body healthy.

Topics of the first video include:

  1. Why we are losing the ‘war’ on Cancer
  2. Metastasis kills 90% of the cancer patients; 50% die of cachexia (wasting disease).
  3. The virtue of the immune system in combating disease, including cancer.
  4. Chemotherapy agents MOP and CHOP are derivatives of WWI mustard gas.
  5. Angiogenesis and why cutting out the primary tumor is bad.
  6. Obesity, diabetes and the sugar consumption explosion.
  7. The greatest of health threats called Iatrogenic disease – illness caused by modern medicine.
  8. The superficiality of regular medicine with regards to the US cancer patient.
  9. Negative synergy of cocktails of different toxins.
  10. Why Prunes and Eggs are healthy foods.
  11. Selenium the antidote to mercury.
  12. The benefits of resveratrol.
  13. The benefits of Blueberries, Strawberries, Raspberries, Cranberries, Apples, Elderberries, Black Cherries, Lycopene, Pumpkins.
  14. How foods barely contain minerals in the US.
  15. Vegetables of the cross/cruciferous vegetables – “nr 1 vegetables in protecting against cancer”.
  16. Why antacids are not the answer to your stomach troubles.

Check out the accompanying resources page for slides and food advice.

Video 1; Part 1of10
Video 1; Part 2of10
Video 1; Part 3of10
Video 1; Part 4of10
Video 1; Part 5of10
Video 1; Part 6of10
Video 1; Part 7of10

Video 1; Part 9of10
Video 1; Part 10of10

Video 2; Part 1of9
Video 2; Part 2of9
Video 2; Part 3of9
Video 2; Part 4of9
Video 2; Part 5of9
Video 2; Part 6of9
Video 2; Part 7of9
Video 2; Part 8of9
Video 2; Part 9of9

Notes: (blue bold-faced emphasis is all mine)

  1. MERCURY

    Mercury is a toxic metal with significant effects on the thyroid. There is ample evidence that mercury leaches from dental amalgam fillings and contributes to thyroid disease and anemia.

    While large doses of mercury can induce hyperthyroidism, smaller amounts can induce hypothyroidism by interfering with both the production of thyroxin (T4) and the conversion of T4 to T3.

    Mercury disturbs the metabolism of copper and zinc which are two minerals critical to thyroid function. Gray hair can be an indication of mercury accumulation, more so in females than males.

    Mercury causes disruptions to the immune system functioning and promotes the production of IgG and IgE autoantibodies which also are involved in autoimmune thyroid disease.

    Different forms of mercury, organic or inorganic, have different effects on the thyroid. Milk and quite likely estrogen cause an increase in the absorption of mercury.

    Mercury has a very long half-life in the body with a duration of perhaps many years and has been found in cancerous tissues.

    Selenium is the key mineral which protects the body from mercury toxicity. One study showed that cilantro (Chinese parsley) helps remove mercury from the body and protects the body from pre-cancerous lesions.

    As the following article indicates mercury gets into our bodies in a variety of ways including vaccinations. Perhaps the negative effects we see from vaccines are at least partially the result of toxic metals. The association of autism with vaccinations may be related to mercury toxicity. Thimerosal is the mercury-containing preservative that was used in contact lens solutions. Hopefully there are no more of these solutions on the market but if you use contact lens solutions, check the label.

    http://www.ithyroid.com/mercury.htm

  2. Nyctalopia

    Nyctalopia (Greek for “night blindness“) is a condition making it difficult or impossible to see in relatively low light. It is a symptom of several eye diseases. Night blindness may exist from birth, or be caused by injury or malnutrition (for example, a lack of vitamin A).

    The most common cause of nyctalopia is retinitis pigmentosa, a disorder in which the rod cells in the retina gradually lose their ability to respond to the light. Patients suffering from this genetic condition have progressive nyctalopia and eventually their daytime vision may also be affected. In X-linked congenital stationary night blindness, from birth the rods either do not work at all, or work very little, but the condition doesn’t get worse. Another cause of night blindness is a deficiency of retinol, or vitamin A, found in fish oils, liver and dairy products. In the Second World War misinformation was spread by the British to cover up the reason for their pilots’ successful night time missions. Their success was, in the misinformation, attributed to improved night vision and pilots flying night missions were encouraged to eat plenty of carrots, which contain carotenoids and can be converted into retinol.[citation needed] The actual reason for their success was their use of advanced radar technologies.

    The opposite problem, known as hemeralopia, is much rarer.

    The outer area of the retina is made up of more rods than cones. The rod cells are the cells that enable us to see in poor illumination. This is the reason why loss of side vision often results in night blindness. Individuals suffering from night blindness not only see poorly at night, but also require some time for their eyes to adjust from brightly lit areas to dim ones. Contrast vision may also be greatly reduced.

    http://en.wikipedia.org/wiki/Nyctalopia

  3. The Statin Drugs

    Statins are among the most commonly prescribed drugs in medicine. Clinical studies have shown that statins significantly reduce the risk of heart attack and death in patients with proven coronary artery disease (CAD), and can also reduce cardiac events in patients with high cholesterol levels who are at increased risk for heart disease. While best known as drugs that lower cholesterol, statins have several other beneficial effects that may also improve cardiac risk, and that may turn out to be even more important than their cholesterol-reducing properties.

    The Statin Drugs

    Lovastatin and simvastatin are also available as generic drugs. A seventh statin, Baycol (cerivastatin), was removed from the market in 2001 because of potentially serious side effects.

    http://heartdisease.about.com/cs/cholesterol/a/statins.htm

  4. Dangers of Statin Drugs: What You Haven’t Been Told About Popular Cholesterol-Lowering Medicines

    By Sally Fallon and Mary G. Enig, PhD

    Hypercholesterolemia is the health issue of the 21st century. It is actually an invented disease, a “problem” that emerged when health professionals learned how to measure cholesterol levels in the blood. High cholesterol exhibits no outward signs–unlike other conditions of the blood, such as diabetes or anemia, diseases that manifest telltale symptoms like thirst or weakness–hypercholesterolemia requires the services of a physician to detect its presence. Many people who feel perfectly healthy suffer from high cholesterol–in fact, feeling good is actually a symptom of high cholesterol!

    […]
    How Statins Work

    The diagram below illustrates the pathways involved in cholesterol production. The process begins with acetyl-CoA, a two-carbon molecule sometimes referred to as the “building block of life.” Three acetyl-CoA molecules combine to form six-carbon hydroxymethyl glutaric acid (HMG). The step from HMG to mevalonate requires an enzyme, HMG-CoA reductase. Statin drugs work by inhibiting this enzyme–hence the formal name of HMG-CoA reductase inhibitors. Herein lies the potential for numerous side effects, because statin drugs inhibit not just the production of cholesterol, but a whole family of intermediary substances, many if not all of which have important biochemical functions in their own right.
    […]
    Cholesterol

    Of course, statins inhibit the production of cholesterol–they do this very well. Nowhere is the failing of our medical system more evident than in the wholesale acceptance of cholesterol reduction as a way to prevent disease–have all these doctors forgotten what they learned in biochemistry 101 about the many roles of cholesterol in the human biochemistry? Every cell membrane in our body contains cholesterol because cholesterol is what makes our cells waterproof–without cholesterol we could not have a different biochemistry on the inside and the outside of the cell. When cholesterol levels are not adequate, the cell membrane becomes leaky or porous, a situation the body interprets as an emergency, releasing a flood of corticoid hormones that work by sequestering cholesterol from one part of the body and transporting it to areas where it is lacking. Cholesterol is the body’s repair substance: scar tissue contains high levels of cholesterol, including scar tissue in the arteries.

    Cholesterol is the precursor to vitamin D, necessary for numerous biochemical processes including mineral metabolism. The bile salts, required for the digestion of fat, are made of cholesterol. Those who suffer from low cholesterol often have trouble digesting fats. Cholesterol also functions as a powerful antioxidant, thus protecting us against cancer and aging.

    Cholesterol is vital to proper neurological function. It plays a key role in the formation of memory and the uptake of hormones in the brain, including serotonin, the body’s feel-good chemical. When cholesterol levels drop too low, the serotonin receptors cannot work. Cholesterol is the main organic molecule in the brain, constituting over half the dry weight of the cerebral cortex.

    Finally, cholesterol is the precursor to all the hormones produced in the adrenal cortex including glucocorticoids, which regulate blood sugar levels, and mineralocorticoids, which regulate mineral balance. Corticoids are the cholesterol-based adrenal hormones that the body uses in response to stress of various types; it promotes healing and balances the tendency to inflammation. The adrenal cortex also produces sex hormones, including testosterone, estrogen and progesterone, out of cholesterol. Thus, low cholesterol–whether due to an innate error of metabolism or induced by cholesterol-lowering diets and drugs–can be expected to disrupt the production of adrenal hormones and lead to blood sugar problems, edema, mineral deficiencies, chronic inflammation, difficulty in healing, allergies, asthma, reduced libido, infertility and various reproductive problems.

    Enter the Statins

    Statin drugs entered the market with great promise. They replaced a class of pharmaceuticals that lowered cholesterol by preventing its absorption from the gut. These drugs often had immediate and unpleasant side effects, including nausea, indigestion and constipation, and in the typical patient they lowered cholesterol levels only slightly. Patient compliance was low: the benefit did not seem worth the side effects and the potential for use very limited. By contrast, statin drugs had no immediate side effects: they did not cause nausea or indigestion and they were consistently effective, often lowering cholesterol levels by 50 points or more. During the last 20 years, the industry has mounted an incredible promotional campaign–enlisting scientists, advertising agencies, the media and the medical profession in a blitz that turned the statins into one of the bestselling pharmaceuticals of all time. Sixteen million Americans now take Lipitor, the most popular statin, and drug company officials claim that 36 million Americans are candidates for statin drug therapy. What bedevils the industry is growing reports of side effects that manifest many months after the commencement of therapy; the November 2003 issue of Smart Money magazine reports on a 1999 study at St. Thomas’ Hospital in London (apparently unpublished), which found that 36 percent of patients on Lipitor’s highest dose reported side effects; even at the lowest dose, 10 percent reported side effects.2

    http://www.westonaprice.org/moderndiseases/statin.html

« Previous Page

Blog at WordPress.com.